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The problem of the optimal control of the deformation path of a metal under complex loading is formulated and solved. The 
equations in the theory of elastoplastic processes due to II'yushin are used as the defining plasticity relations. A solution of the 
optimal problem is obtained using dynamic programming. It is shown that, by controlling the deformation paths, a significant 
reduction in the work of plastic deformation is possible. © 1999 Elsevier Science Ltd. All rights reserved. 

It has been established experimentally [1, 2] that, in the complex loading of a metal, the force of plastic 
deformation is reduced compared with simple stretching or compression. This can be explained using 
II'yushin's theory of elastoplastic processes [3]. The effect of complex loading on the magnitude of the 
work of plastic deformation and the possibility of using this effect to develop new technologies in the 
plastic treatment of metals are shown below. 

1. F O R M U L A T I O N  OF THE P R O B L E M  

Consider the deformation of a homogeneous metal sample which is simultaneously under 
conditions of tension and torsion. This process is conveniently represented by a deformation path in 
II'yushin vector space 31 - 33. Deformation paths of a specified length s- will be investigated in this 
space. It is assumed that there is active loading of the sample in accordance with some law and that 
the initial segment of the path with a length So corresponds to elastic loading. Only the plastic deformation 
of the sample is investigated. The point O at the start of the plastic deformation is adopted as the origin 
(Fig. 1). Suppose a vector o is positioned at point O at an angle O0 to the 31 axis. Among the paths of 
length g, it is required to find such a path that the work of plastic deformation is a minimum, that is 

s 0 +~ s O +.~" 
A =  S ~ r . d 3 =  ~ t~(s)cos~(s)ds---~ inf  

sO ~1} 

The material is assumed to be strain-hardening, that is, a = 6(s), where a is the modulus of the stress 
vector and O is the angle between o- and d 3  (the convergence angle). 

We reduce this problem to a discrete form and approximate the deformation path with a multilink 
broken line, each link having the same length A. Then, s = NA, where N is the number of links. 

As the control, we choose the angle of inclination of a link to the 31 axis: u( t )  = ct(t) (t = 1 . . . . .  N )  
(Fig. 1). The phase variables Xo(t) = s(t) ,  x l ( t )  = 31(0, x2(t) = 33(0 (t = 0 . . . .  , N) are introduced. 
The scalar properties of the material (the modulus of the vector tr depend solely on the accumulated 
deformation s and, in the mth segment, they are independent of the previous controls u( t )  (t = 1 . . . . .  
m - 1). The vector propertiesof the material (the angle O) depend on the loading history. The complexity 
of the solution of the control problem therefore lies in the fact that it is necessary to take account of 
the deformation history. 

According to the postulate of decaying memory [3], it is only necessary to remember the shape of 
the deformation path in a preceding segment of length 3. (the trace of the lag of the material), the 
magnitude of which is determined experimentally for each metal. It is usually assumed that, in the case 
of steels, 3. = (6 + 8)es, where es = oJE ,  as is the yield stress of the material and E is the modulus of 
elasticity. 

We consider the formulation of a control problem with hysteresis in a single step [4]. In this case, 
A = M2 = const. The vector o" at the end of each link remains at a certain angle 7(0 (t = 2 . . . . .  N) 
(Fig. 1) and we denote the path deflection angle by [3(t) (t = 2 . . . . .  N). It is then possible to determine 
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Fig. 1. Fig. 2. 
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the angle of  inclination of  the vec tor  tr at the beginning of  each link, starting f rom the second, as follows: 

~(t)  = ~ t )  + ~(t), t = 2 . . . . .  N 

The  positive reading  of  each  angle is shown in Fig. 1. The  funct ion of  the angle of  convergence  6 at 
the tth s tep can be specified in the fo rm [5] 

age, y)  = V(t)e -ky, y = s(t) - s ( t -  1) (1) 

where  k is a constant  of  the mater ia l .  
In  this case, it is a s sumed  in accordance  with the lag principle,  that  O(y) ~ 0 when y ~ ~. and, in 

order  to take account  of  the restr icted memory ,  it is sufficient to introduce the two supp lementa ry  phase  
variables  

x3(t ) = u(t),  t = 1 . . . . .  N; x4(t) =.x3(t - 1), t = 2 . . . . .  N 

The  deflection angle will then  be de t e rmined  in the following m a n n e r  

~(t)  = ( u ( t ) - x 3 ( t -  1)), t =  1 . . . . .  N 

The  angle W(t) can be wri t ten  in the fo rm 

~t(O = ~(t) + (u(t)  - x3(t - 1)), t = 1 . . . . .  N 

~ t )  = [ ' ~ t -  1)+  ( u ( t -  1 ) - x 3 ( t - 2 ) ) ] e  "~ ,  t = 2 . . . . .  N 

We will deno te  the convergence  angle ~ at the end of  a link of  length A by xs(t) = y(t) (t = 2 . . . . .  

The  discrete op t imal  cont ro l  p r o b l e m  can now be fo rmula ted  as follows: it is required to find the 
op t imal  process  (~, i )  for  which the funct ional  

N xo(t) 
J ( u , x ) =  ~,  S f f ( Y ) C ° S { [ U ( t ) - x 3 ( t - l ) + ( x 3 ( t - 1 ) - x 4 ( t - 1 ) +  

t = l  x d ( t - I  ) 

+ x  5 (t - 1))e - ~  ]e - ~  }dy (2) 

at tains a m i n i m u m  value,  that  is 

J(~, J )  = rain J(u ,  x )  

and constraints  in the fo rm of  the equali t ies 
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X o ( t ) = X o ( t - I ) + A ,  x ~ ( t ) = x t ( t - l ) + A c o s u ( t  ), t = l  ..... N 

x2(t ) = x 2 ( t - 1 ) + A s i n u ( t  ), x3(t ) = u(t), t = 1 . . . . .  N (3) 

x 4 ( t ) = x 3 ( t - 1 ) ,  x s ( t ) = [ x s ( t - l ) + x 3 ( t - 1 ) - x 4 ( t - l ) ] e  -~a, t = 2  ..... N 

are satisfied with boundary conditions 

Xo(O)=s O, Xl(0)=0, X2(0)=0, X3(0)=~ 0, X4(1)=~ 0, Xs(1)=0 (4) 

and constraints in the form of the inequality 

l u ( t ) - x 3 ( t - l ) + [ x 3 ( t - 1 ) - x 4 ( t - 1 ) + x s ( t - 1 ) ] e  -ka ~ n / 2 ,  t = l  ..... N (5) 

The last condition follows from the requirement of active loading during the whole deformation process. 
The discrete optimal control problem (2)-(5) satisfies Bellman's necessary condition for optimality 

[4], and we shall therefore use dynamic programming to solve it. 

2. S O L U T I O N  OF T H E  P R O B L E M  

We will use the following lemma. 

L e m m a .  A minimum of the function 

s2 
f(13) = ~ O(s) cos[13e -k(s-s')]ds 

Sl 

when s2 > sl I> 0, k > 0, or(s) > 0 in the interval 13 ~ [--rd2, rd2] is reached when 13 = -+ n/2. 
The proof  of  this lemma is rather obvious and follows from the properties of the function cos 13. 
Using the well-known recurrence formula of dynamic programming [4] and the lemma, the solution 

of problem (2)-(5) can be written in the form 

~ ( N - p + l ) = + ~ + ~ 3 ( N - p ) ( l - e - k a ) + ( J 4 ( N - p ) - ~ 5 ( N - p ) ) e - ~ X ,  p = l  . . . . .  N (6) 
2 

Using relation (3) together with boundary conditions (4), we obtain 

~(t)=a~o + . X - - ( t - ( t - 1 ) e - ~ ) ,  t = l  . . . . .  N 
2 

(7) 

In this case, the deflection angle 

l~(t) = ~( t ) -  ~ ( t -  1) = +2 (1  - e-ka), t = 2 ..... N (8) 

In formulae (7) and (8), the sign in front of n/2 corresponds to the choice of sign in formula (6). It is 
then obvious that the optimal path is a broken line inscribed in a circle of a definite radius R (curve 1 
in Fig. 2. The direction of motion along the path corresponding to a plus sign in front ofrd2 in formulae 
(6) and (7) is shown by the arrows). 

We shall now alternate the signs in front ofrd2 in formula (6) and obtain the following optimal control 
function 

and deflection angle 

~ ( t ) = O 0 + ( - 1 ) t - I ~ e  -ka, t = l  ..... N (9) 
2 

~( t )=( -1)  t-I 2 ( l + e - ~ a ) ,  t = 2  ..... N (10) 

In this case the optimal path will be a zig-zag broken line (curve 2 in Fig. 2). 
Similar calculations can be carried out using a smaller link length A = 3./3, ~J4 , . . .  and introducing 

additional phase variables. In this case, the form of solutions (7)-(10) does not change. However, in 
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the phase plane xl -x2, the shape of the optimal path does undergo changes. For example, if one considers 
solution (7), (8), it can be seen that, as the link length A is reduced, the circumradius of the broken 
line with links of equal length also decreases and, in this case, the value of the functional (2) decreases. 

We shall find the circumradius R which corresponds to the optimal path when A ~ 0. It is well known 
that the relation 

~,t = R~ tL I n 

holds for small central angles t#,, where R n is the circumradius and n is the number of links in the dashed 
line. In this case, the angle (0, is equal to the path deflection angle 13(n). Then 

2~. 2 
= lim R, = 

. ~ -  rm(1-e -~ /" )  rtk 

It is clear that,the minimum of the functional (2) is equal to zero and that this value is reached in a 
circle of radius R. However, this conclusion contradicts Iryushin's plasticity postulate [6]. 

The contradiction obtained is obviously due to the fact that, in the case of a small link length (A 
0), formula (1) gives a significant error in the determination of the angle O. It is therefore necessary 
to treat the choice of the approximating functions for the angle 0 with care and to know the limits of 
their applicability. This, for example, relates to the well-known formula due to Dao-Zui-Bik [7] which 
describes the change in the convergence angle O in a trajectory of constant curvature Z0. 

o<,0  ro0- 0r, ) 
s L k t,  oJJ 

W h e n  ~o = ~ 2 ,  Xo = 1//~ = irk/2, we obta in  

O(So,S)= I -  ( l - e  -~(s-s°)) =-~g(s), s¢[so,'$] 

It can be shown that the values of the function g(s) in the interval [So, s] when ~ -> So are close to 
unity. For example, when k -- 300, So = es = 10 -3, the form of the functiong(s) shown in Fig. 3 confirms 
that the value o[  the functional (2), when ~ -> So is close to zero in deformation paths in the form of a 
circle of radius R = r~k/2. 

Hence, the solution of the deformation path optimal control problem has shown that II'yushin's theory 
of elastoplastic processes describes the effect of the reduction in the work of plastic deformation of a 
metal under complex loading. This result can be used to optimize practical technological processes 
involving the pressure treatment of metals. Although, in practical processes, it is usually required that 
a specified point in deformation space is reached, which results from the need to solve an optimal control 
problem with a clamped right-hand end, the qualitative form of the solution is retained in this case. 
For example, thq~ deformation paths in the manufacture of a hollow steel cylinder by the backward 
extrusion method [8] have been investigated and it has been shown that, when using a scheme with 
"active friction", the deformation paths of the metal particles are distorted (they become zig-zag shaped) 
and a significant reduction in the extrusion force is observed. 
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Fig. 3. 
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